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The paper discusses the reflexion of a shock wave off a rigid wall in the presence 
of a boundary layer. The basic idea is to treat the problem not as a reflexion but 
as a refraction process. The structure of the wave system is deduced by a simple 
mapping procedure. It is found that a Mach stem is always present and that 
the bottom of this wave is bifurcated-called a lambda foot. The reflexion is said 
to be regular if the Mach stem and the lambda foot are confined to the boundary 
layer and irregular if either extends into the main stream. Two types of regular 
reflexion are found, one that has reflected compression waves and the other 
that has both reflected compression and expansion waves. Initial conditions 
are given that enable one to decide which type will appear. There are also two 
types of irregular reflexion, one that has a Mach stem present in the main stream 
and the other that is characterized by a four-wave confluence. Finally there are 
also two processes by which regular reflexions become irregular. One is due to the 
formation of a downstream shock wave that subsequently sweeps upstream 
to establish the irregular system and the other is due to boundary-layer sepa- 
ration which forces the lambda foot into the main stream. 

1. Introduction 
The interaction of a plane shock wave with a boundary layer in steady flow 

has been the subject of many experimental investigations. Some of the better- 
known studies are due to Ackeret, Feldmann & Rott (1946), Liepmann (1946), 
Fage & Sargent (1947), Bardsley & Mair (1951), Barry, Shapiro & Neumann 
(1951), Liepmann, Roshko & Dhawan (1952), Gadd, Holder & Regan (1954), 
Bogdonoff & Kepler (1955), Holder & Gadd (1955), Chapman, Kuehn & 
Larson (1958), Hakkinen, Greber & Trilling (1959). While this work has un- 
doubtedly led to progress towards understanding the phenomenon, the flow is so 
complicated that a completely satisfactory theory has not yet been formulated. 
Various theories of the laminar interaction have received critical discussion 
by Curle (1962) and by Lees & Reeves (1964). The theory of the turbulent 
interaction has not been developed to the same extent. The paper by Lees & 
Reeves gives perhaps the most successful theory currently available. The flow 
model used in their analysis is shown in figure 1 and it contains the most 

t Now on leave at Graduate School of Aerospace Engineering, Cornell University, 
Ithaca, N.Y. 
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prominent features of the interaction that have been observed by experiment. 
However, the details of the wave system in the supersonic part of the boundary 
layer have been neglected and probably this is the most important gap in present- 
day knowledge of the phenomenon. Some experimenters have attempted to 
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FIGURE 1. Flow model (after Lees & Reeves 1964). 
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sketch the wave pattern in this area, the most comprehensive attempt being due 
to  Bogdonoff & Kepler (1955). The objective of the present paper is to construct 
a reasonably complete picture of the entire structure of the interaction including 
in particular the wave pattern inside the boundary layer. The basis of the ana- 
lysis is to treat the phenomenon as the refraction of a shock by a boundary layer 
which is represented by an inviscid shear layer. The methods that will be used 
here have been previously applied by the present writer (Henderson 1966) to 
the refraction of a shock wave a t  an interface, or boundary between two differ- 
ent gases. 

2. Shock-wave refraction 
A systematic series of experiments on shock-wave refraction has been carried 

out by Jahn (1956). The theory of the phenomenon has been discussed by the 
present writer Henderson (1966). Following this work it is convenient to classify 
the wave systemsinto three groups (figure 2). In  the first group the incident shock 
i is refracted at the interface and this results in a transmitted wave t which is 
always a shock and a reflected wave which may be either a shock r or a Prandtl- 
Meyer expansion e. These two wave systems comprise the regular group and 
they are characterized by a well-defined refraction point Q and by the property 
that all waves lie along straight rays that emanate from that point. The flow 
in the vicinity of Q can be determined by constructing the shock polars and 
characteristic curves for the wave system in the hodograph (P/P,, S)-plane. 
It can be shown by the analysis that there is in general a different entropy 
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path on the one hand for the flow crossing the transmitted shock and on the 
other for the flow crossing the incident and reflected waves. One physical 
consequence is that a vortex sheet, or slip line, begins a t  Q. 

Mach 
Sonic flow. I line - 

\-Mach 
\ line 

( b )  

- A!-- ' Slip 

i i 

Degenerate Mach 
reflexion type 

Four-wave 
confluence type 

FIGURE 2. Wave refraction systems at a gas interface. rnm, interface; Q ,  refraction point; 
F,  confluence point; i, incident shock; t ,  transmitted shock; r, reflected shock; e, reflected 
expansion. ( a )  Regular group. (b)  Degenerate group. (c) Fast-slow irregular refraction. 
(d) Slow-fast irregular refractions. 
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If the reflected wave is a shock the flow near Q can be described by a single 
polynomial equation of degree 12 (Henderson 1966). The state of the gas can 
be found from a particular real root of the polynomial. For a refraction at a 
Mach number interface the initial conditions sufficient to define the coe6cients 
of a polynomial, and therefore a set of roots, may be taken to be (y ,  Moo, Mol, 
Pl/Po). It often happens that for given initial conditions several wave systems 
having either reflected shocks and/or reflected expansions are available as 
feasible physical alternatives. If all the possibilities are arranged as an ordered 
set in ascending order of magnitude and compared with experiment then it is 
found that i t  is the weakest member of the set that actually appears (Henderson 
1966). The strength or magnitude of a solution is measured by the pressure 
ratio across the transmitted shock. 

If the initial conditions are gradually and continuously altered then i t  
sometimes happens that one of the waves in a regular system will degenerate 
to a Mach line. The second group of refractions consists of the various types of 
regular systems that contain a degenerate wave. The third group are merely 
those that do not fall into the above categories and they are collectively called 
the irregular group. A further classification can be made by reference to the 
relative speeds of sound in the two media. For example if i is in a medium where 
the speed of sound is ai and t is a medium where it is at, then the refraction is 
called ‘slow-fast’ if ui < ut and ‘fast-slow’ if ui > at. The regular and degener- 
ate wave systems are essentially the same for both the slow-fast and fast-slow 
combinations of media but there are differences in the irregular group. These 
are shown in figures 2c and 2d,  which include all the known types.? Degenerate 
wave systems are often but not always encountered during transition from a 
regular to an irregular system or vice versa. Furthermore, a degenerate system 
is often but not a,lways found to be associated with a multiple root of the poly- 
nomial. So far as it is known an irregular system only appears for those initial 
conditions for which regular systems are impossible. This may be brought 
about for example by real roots of the polynomial becoming unreal or by the 
real roots requiring that one of the waves in the qstem becomes a thermo- 
dynamically impossible expansion shock. A more detailed discussion of these 
matters is given in our earlier paper. 

3. Refraction of a shock wave by a boundary layer 
3.1. Xtructure of the regular part of the refraction 

Inside the boundary layer the Mach number decreases continuously and mono- 
tonically from the value i t  has at the free stream to zero at the wall. Between 
these limits a sonic line exists that effectively divides the boundary layer into a 
subsonic and a supersonic part. For analytical purposes the continuous Mach 
number distribution is approximated by an incremented profile so that the 
boundary layer is supposed to consist of thin parallel streams of inviscid gas with 
a small change in the Mach number between one stream and the next. Specific- 
ally the effects of viscous mixing between the streams is neglected. If an incident 

t Further work has extended and corrected the theory of the irregular wave systems, 
particularly of the fast-slow irregular group, Henderson (1967). 
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shock i strikes the outer edge of this idealized boundary layer as in figure 3 
then it will be refracted by the first incremental change in the Mach number. 
Consequently there will appear a transmitted shock t ,  and either a reflected 
shock r, or a reflected expansion el. At the next Mach number increment the 
wave t ,  will itself be refracted, causing the shock t, to appear together with a 
reflected wave r2 or e2. In  this way it may be seen that as i is refracted it pene- 
trates the boundary layer and becomes a curved shock ti which emits a band of 
reflected waves r j  or ej. Further information on the nature of the wave system 
can now be obtained from the hodograph diagram. 
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B.L. \ 
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(b) (€1, el, (12) 

FIGURE 3. Conditions for a reflected shock or a reflected expansion. (a )  Reflected shock. 
( 6 )  Reflected expansion. 

Construction of the diagram is commenced by plotting the shock polara for 
the Mach numbers Moo and Mol. In  general the polars will be found to intersect 
at the symmetric points A,, A ,  and at the double point D,. This latter point 
represents the initial state of both streams. The wave i maps into a point D, 
on polar Moo and the position of D, will be determined by the initial conditions. 
The polar and the characteristic for the Mach number &Ilo are plotted next and 
both curves start from D,. The geometry of the diagram is such that if D, has a 
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larger ordinate than A, then the only regular solutions (roots) are a,, a, both 
of which correspond to a regular wave system with a reflected shock. The 
ordered set is therefore (a,, a,). If, however, D, lies below A, then the charac- 
teristic curve leads to an extra solution el which corresponds to a regular system 
with a reflected expansion. The ordered set is now (el, a,, a,). The ordinate of 
A, can be calculated as shown in the appendix and is given by 

One observes that this equation is independent of the ratio of specific heats y. 
The curve is shown in figure 4. 

P,/Po = M i -  1. (1) 
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FIGURE 4. Initial conditions for reflected compression and expansion waves. 

Consider now the (al, a,) set and in particular the a, solution. This solution 
may be constructed for the refraction of ti a t  each Mach number increment. 
When this is done it is found that a, moves along the successive polars for Moi 
and gradually approaches the sonic point Soi (figure 5a).  With decreasing 
Moi the pressure ratio across ti increases and the shock thus becomes stronger 
and steeper as it penetrates. While this is happening the polar Mli for the re- 
flected shock is steadily shrinking.? The process terminates when a, becomes 
coincident with X O n ,  denoted by a, = Son. Physically this condition corresponds 
to soiiic speed downstream oft, and the wave r, becoming a Mach line degener- 
acy. At  the coincidence the polar MI, shrinks into the point XOn. Further pene- 
tration will require subsonic flow downstream of the transmitted shock and a 
reflected shock will then be impossible. It is concluded that the regular re- 
fraction extends only to the sonic point t, = Son and that beyond this point 
the refraction becomes irregular. The reflected waves ri are propagated towards 
the main stream and are refracted by the part of the boundary layer that they 

t The diagram was too crowded t o  show the M,, polars clearly and they were therefore 
omitted. 
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FIGURE 5.  Refraction of the incident shock wave i. ( a )  Refraction with reflected compress- 
ion waves. ( b )  Refraction of T ~ .  (c) Locus of a1 and tcz. (d )  Refraction with reflected expansions 
and compressions. 

Fluid Mech. 30 45 



706 L. P. Henderson 

cross. A typical refraction of r j  gives rise to a transmitted shock and a reflected 
expansion (figure 5 b)  and therj  are weakened as they are propagated. The regular 
part of the refraction thus forms a wave net which can be determined from the 
hodograph diagram and the polynomial. Ultimately the r j  emerge from the 
boundary layer and envelope into a shock wave r1 in the main stream. 

The wave i maps into a point D, which is continuous with the a, locus and 
in fact it  is one of the end-points of the locus. This means that in the physical 
plane i and ti (a,) can be regarded as forming a continuous single shock which 
begins to emit compression waves of small intensity as it enters the boundary 
layer. However, the same continuity does not exist between i and ti (a,), see 
figure 5c;  the maps of these waves are in fact discontinuous with respect to  
each other. In  the physical plane the a, solution requires that the vanishingly 
small Mach number increment a t  the edge of the boundary layer must dis- 
continuously produce a shock t, that  is in general much stronger than i and also 
a reflected shock r, of finite strength. It is also implied that the wave angles of 
i and t ,  (a,) can be substantially different. It is contrary to accumulated experi- 
ence that a shock propagating through an indefinitely small Mach number 
gradient will suddenly exhibit a large change in its pressure ratio and its wave 
angle. Clearly of the two alternatives (a,, a z )  the a, solution is the only feasible 
choice. 

When the initial conditions place D, below A ,  the ordered set becomes 
( e l ,  a,, a,). The hodograph diagram reveals that  both the a, and a, solutions 
are discontinuous with respect to  the map of i and that the only solution which 
is continuous with i is 8,. On the basis of previous argument the el solution is to 
be selected. A further argument in favour of the E ,  solution can be developed 
as follows. The boundary-layer refraction is the slow-fast type? andwith respect 
to our previous work on the gas interface (Henderson 1966) it is analogous to 
the air-CH, combination. The curve corresponding to the A ,  curve is shown in 
figure 4. The region of initial conditions that  lie below this curve require the 
(e l ,  a,, a,) set for both gas combinations. One can now imagine that the follow- 
ing fictitious experiment is performed on the Moo-M,, interface of the boundary 
layer. The Jl,, stream is gradually and continuously diluted with methane 
until it  consists entirely of this gas. There will be corresponding gradual and 
continuous changes in the hodograph diagram and in particular the polar 
intersection A, will move slowly down the diagram until the A ,  curve is changed 
into the air-CH, curve (figure 4). Now the experimental results for the air-CH, 
refraction agree with the E ,  solution; hence by continuity this solution must also 
be appropriate to the air-air interface for the analogous region of initial con- 
ditions. The position now is that  when D, lies above A ,  there will be a regular 
refraction with a reflected shock and when D, lies below A ,  there will be a regu- 
lar refraction with a reflected expansion. I n  the special case when D, and A ,  
are in coincidence the reflected wave is a Mach line and the system is degenerate. 

The maps of the refraction with a reflected expansion are shown in figures 3 b 
and 5d.  The hodograph diagram shows that, as t j  penetrates, the intersection 

t Because a j  < 
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point Alj between successive pairs of polars moves towards D, until there is 
the coincidence el E A ,  = D, = a1. The physical consequence is that the waves 
ei weaken steadily as t j  penetrates until they finally degenerate to a Mach line 
at the coincidence. With further penetration D, lies above A ,  and the refraction 
becomes an a, type with reflected compression waves. From here on the situa- 
tion is similar to that shown in figure 5a. The map of ti exhibits a cusp in the 
hodograph plane at  the Mach line degeneracy, the lower branch of the map 
corresponding to reflected expansions and the upper branch to reflected 
compressions. 

3.2. Structure of the irregular part of the refraction 

Consider now the irregular wave system at the foot of the shock ti. The incident 
wave is t ,  and the refraction will occur at  the MBn-M0(,+,) interface. By once 
again appealing to the fictitious experiment? it may be concluded that the 
irregular refraction is one of the types shown in figure 2 d .  This, however, is on 
the tacit assumption that the wall does not alter the wave system in any essen- 
tial manner. The problem therefore is to find out what effect the close proximity 
of a rigid wall is likely to have upon these systems. To begin with consider an 
isolated flow with a single Mach number interface in which the initial conditions 
require the appearance of the four-wave confluence type of irregularity. If in 
the initial state all boundaries are at  infinity then the maps will be as shown in 
figure 6a. Maps similar to these ones have been discussed in detail previously 
(Henderson 1966). In  a real flow it would be expected that the waves tn+l and 
r would become Mach lines in the far field due to their being overtaken by 
following expansion waves. The same thing is assumed to happen here although 
it is not essential to the argument. The point infinity maps into D, for tn+l 
and D, for r and the shocks themselves map into the polar segments QBD, 
and FD, respectively. The hodograph diagram shows that is inclined 
forward of the refraction point Q and strengthens continuously as it propa- 
gates until it becomes normal to the flow at B. Beyond B it  weakens continu- 
ously, ultimately becoming a Mach line a t  infinity. In  Jahn’sexperimentson this 
wave system at the air-methane interface the shock segment QB could be 
detected although it was not very pronounced, see plate 7 of his paper. Now 
suppose that a rigid wall is brought from infinity to a position close to the 
refraction point Q as in figure 6 b. For an inviscid gas the wave tn+l must now be 
normal to the wall at  B and its polar segment is reduced to QB but the remainder 
of the hodograph diagram is unaltered. The same result may be obtained from 
Jahn’s experiments, for when he placed a wall near the interface the effect was 
to reduce the transmitted shock to the segment QB but without altering the 
nature or structure of the shock system, see plate 8 of his paper. Thus the effects 
that the wall has on the wave system are to terminate tnf l  at the normal shock 
point B and to enlarge the scale of tn+l in the vicinity of Q, but there is no 
change in the structure of this irregular system. 

The next problem is to find out how this system must be modified in order to 

t In this case the Mo(n+l) stream is gradually and continuously replaced by methane. 
45-2 
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FIGURE 6. Wall effect on four-wave confluence irregular refraction. 
( a )  Walls at infinity. ( 6 )  Wall near interface mm. 

fit the conditions a t  the bottom of the wave ti that is at  t,. In  this connexion 
it will be recalled that the flow is a t  sonic speed downstream of t,. As a pre- 
liminary, consider the four-wave confluence illustrated in figure 7. The first 
pair of maps show the regular intersection of two incident shocks i,, i, and 
there are two solutions (PI, P,) available to describe conditions near the wave 
confluence point. The weaker PI solution is considered to be physically appro- 
priate. When all boundaries are at  infinity the reflected waves r,, r2 will map 
into the polar segments P,D, and P,D, respectively. Now suppose that i, 
is gradually and continuously strengthened while i, remains unchanged. 
This will cause D, to move around the polar towards the sonic point S,  and a t  
the same time the polar for the reflected wave r ,  will begin to shrink. As the 
process continues PI, P, come into coincidence PI = p2 and with further de- 
velopment they become unreal. When this happens a gap opens in the diagram 
in the sense discussed by Guderley (1947, 1968), Kawamura & Saito (1956) 
and Henderson (1966). The physical result is a double Mach reflexion system 
that contains two confluence points y,, y, each of three waves. The Mach stem 
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n maps into the polar segment y1y2. With continued development D, eventually 
forms the coincidence D, = S, and the polar for rl shrinks into this point. There 
is now sonic speed downstream of i, and rl is degenerate. The irregular and 
degenerate wave system that has now been obtained has the appearance of a 

81 

81”82 

-6 0 6 

FIGURE 7. Development of an irregular and degenerate four-wave confluence. 

single Mach reflexion system. In fact all that one has to do in order to convert 
it  to a conventional Mach reflexion is to strengthen i, still further so that 
the point D, moves on to the subsonic part of the free-stream polar. It can now 
be seen that the degenerate system figure 7 d  actually lies on the transition 
between the Mach-reflexion and four-wave confluence types and in this sense 
the system is structurally unique. It is concluded that the only known irregular 
wave system that can be fitted to t ,  is the degenerate system shown in figure 7 d. 
It has been added to the boundary-layer maps in figure 5. The wave t j  thus 
branches into a lambda foot once it propagates beyond t,. 
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A hodograph paradox 

For the lambda foot to exist the flow downstream of its front wave A, must 
be supersonic but this makes it impossible for A, to be propagated ahead of the 
confluence point y2. Accordingly, if A, exists it must be propagated towards y, 
and not away from it. In  these circumstances A, would form as a result of dis- 
turbances that originate in the upstream boundary layer and not by dis- 
turbances from the incident shock i .  The hodograph diagram lends further 
support for this view because it shows that the initial conditions (yl,Xoo, PJP,) 
which are sufficient to define i and the regular part of the refraction are not 
sufficient to define the strength or pressure ratio of A,. In  fact, the strength 
of A, can be varied within considerable limits D, < A, < Son (figure 5 ) ,  without 
having any effect on the hodograph map of i or the regular part of the refraction. 
A similar situation is shown in figure 7, where i,, i, can be varied independently 
inside wide limits. Within this context one concludes that the shock/boundary- 
layer interaction is the result of two primary and more or less independent 
disturbances, one being the incident shock i and the other being the wave A, 
which is formed from disturbances that arise in the boundary layer. This pic- 
ture is unsatisfactory because it is physically evident that A, cannot exist and 
be of finite strength unless i also exists and is of finite strength. Presumably 
what actually happens is that the initial disturbance from i is transmitted 
through the supersonic part of the boundary layer into the subsonic part, where 
it spreads out both upstream and downstream, the upstream disturbances 
leading to the formation of A,. The paradox thus arises because the present 
methods cannot deal with the history of the flow but only with the final equili- 
brium state. A knowledge of the behaviour of the subsonic layer is needed here 
but this is thought to be outside the scope of the present study. 

Fine structure of the lambda foot 

The next problem is to find out how the upstream disturbances produce A,. 
For this purpose it will be assumed that the supersonic disturbances (waves) 
originate on the upstream boundary-layer sonic line. Now any wave that begins 
on a sonic line must not only be vanishingly weak but, as shown by Guderley 
(1947, 1962), it must also be a compression wave. Hence A, is evidently formed 
by an envelope of compression waves that begin on the sonic line (figure 8). 
The present methods are not sufficiently quantitative to determine the distribu- 
tion of this envelope or in consequence the initial strength of A,. This would 
require a knowledge of the pressure distribution along the sonic line and would 
have to be obtained from the theory of the subsonic layer. It will be noted, 
however, that the pressure increases along the sonic line and this will require 
a corresponding increase in the thickness of the subsonic layer. The discussion 
will now proceed on the assumption that A, begins at some arbitrary state 
represented by the point L, in figure 8. 

As A, propagates towards yz  it  is refracted because of the monotonic increase 
in the Mach number from L, to y,. The hodograph diagram shows the refraction 
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to be regular and the type that emits expansion waves ; A, will therefore weaken 
as it propagates and its wave angle will become smaller. The expansion waves 
emitted by A, are propagated towards the wall and in the process are weakly 
refracted. They also become steeper and eventually make a normal intersection 
with the sonic 1ine.t At the sonic line they are reflected as compression waves in 
accordance with the principles established by Guderley. These compression 
waves are propagated back to A,  and begin to strengthen it. As more and more 

tn ,Downstream sonic line 

L 

" 

- 8  0 

FIGURE 8. Fine structure of the lambda foot. 

of them overtake A,  the accumulated effect is to induce a point of inflexion T 
in the wave which is also a minimium point in the hodograph diagram. The 
final compression wave that intersects A, has been sketched; it is labelled g1 y,. 
Waves downstream of g, y, intersect the back wave A,, causing it to steepen. 

The wave A, begins at  the confluence y, as a result of the interaction of A, 
and n. It is in general a second family wave which is also refracted as it propa- 
gates towards the sonic line. The refraction may be initially regular and if so 
compression waves will be emitted and these waves will envelope into a weak 
reflected shock AZR. Eventually the refraction becomes irregular and A,  bifur- 
cates. The position is somewhat analogous to the circumstance at  t,. The front 
wave of the bifurcation A,, is again formed by compression waves starting 
on the sonic line. Interaction of A,, with A, will produce the new back wave 
A,, and this will in its turn bifurcate and so on. All of these waves form in a flow 
that is already complex and they will be less clearly defined than other waves 
in the system such as A, or n. The back wave A,  is therefore a rather untidy struc- 
ture consisting approximately of a diffuse double Mach reflexion system which 
gradually peters out as it approaches the sonic line. The details in the hodograph 
plane could not be constructed very satisfactorily and are omitted from figure 8. 
The maps may now be added to the overall picture as shown in figure 9. 

t This implies that the sonic line is a streamline. This should be nearly true, because it 
would be expected that the inclination of the sonic line to the streamline would be very 
small. 
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FIGURE 9. Regular refractions with upstream and downstream influence. 

4. Downstream influence and Mach reflexion 
The theory of the reflexion of a shock wave a t  a rigid wall in an inviscid gas 

predicts that the regular reflexion becomes irregular-called Mach reflexion- 
with the appearance and growth of a Mach stem. The flow is deflected towards 
the wall by the incident shock and is then brought back parallel to it by the 
reflected shock. According to the theory, the Mach stem is forced to appear 
when the reflected shock is unable to match the deflexion caused by the incident 
shock. Development is similar to that shown in figures 7 a-c. Details of the fine 
structure of the transition are available elsewhere (Guderley 1947, 1962 ; 
Kawamura & Saito 1956). The inviscid model is inadequate for a real gas which 
has a boundary layer along the wall. For example, from the discussion already 
given it can be asserted that a Mach stem t jn is always present even when the 
reflexion is regular. This makes it necessary to revise the definition of regular 
and Mach reflexion, and the following will serve for the present. The reflexion 
will be called regular if t jn is confined to the boundary layer and irregular if it  
extends into the main stream. The problem now is to find out what circum- 
stances force tjn to grow. 

One begins by noting two important facts about the wave system. First, 
the main-steam flow is deflected towards the wall by the shock i (figure 9) but 
sooner or later the flow must be brought back parallel to the wall at  some point 
K by the requirements of continuity. The experimental evidence is that this is 
accomplished by a system of compression waves which appear downstream 
of the interaction. This fact is well known and has been mentioned by many 
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writers, for example Curle (1962) and Lees & Reeves (1964). Evidently these 
waves begin on the downstream sonic line and envelope to form the main-stream 
reflected shock r2. Typical hodographs of the system are shown as the auxiliary 
maps of figure 11. Secondly, consider two incident shocks i,, i, having the 
same (y,Moo) but different strengths P,/P0(, > Pl/Poll, see figure 10. Now be- 
cause both hodographs terminate on the pola,r sonic point locus the weaker 

I I  I 
-8  6, 6 ,  0 s 

PlIpLlI, > p,/poIl but same (YtM00). 

FIGURE 10. Comparison of hodographs of shocks of different strengths 

wave must end on a polar of smaller Mach number than the stronger wave. 
This leads to the interesting conclusion that the weaker wave will penetrate 
the boundary layer more deeply before becoming irregular than the stronger 
wave. As a particular example a Mach line will not become irregular at all and 
will penetrate all the way to the sonic line as shown in figure 11 a. 

Consider now the sequence of events that will be obtained when i is initially 
a Mach line and is then gradually and continuously strengthened until it 
becomes a normal shock. During this development the other initial conditions 
(7, Moo) will be held constant. For simplicity it will be assumed that the 
regular part of the refraction generates only compression waves. The initial 
state is shown in figure 11 a. Since a Mach line must make the Mach angle to 
the flow everywhere, it becomes steeper as it penetrates and ultimately becomes 
normal to the flow at the sonic line. At the sonic line it is reflected reversibly? 
because of its isentropic character. When i is strengthened into a shock (figure 
11 b )  then the wave system which develops is the regular reflexion type that 
has already been discussed. The wave i deflects the main-stream flow through 
the angle - Si and the downstream compression waves then bring it back parallel 
to the wall a t  some point K .  The flow is deflected through the angle v by these 
waves so that, at  K ,  - Si + v = 0. As i is gradually strengthened the penetration 
of t j  becomes smaller and the lambda foot grows steadily. A t  the same time 
I - Si( increases, requiring an equal and opposite response from the compression 
waves. The latter system therefore strengthens and the Mach number down- 
stream of it M-,, becomes smaller. Eventually the stage is reached where Y 
is equal to the Prandtl-Meyer angle for the Mach number Mlo, v = vmax 

t The reflexion is symmetrical. 
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as in figure 11 c for this condition M-,,o = 1. With further development the 
compression waves are no longer able to match the deflexion across i and the 
shock envelope r2 strengthens and moves towards the boundary layer and then 

S.L. S.L. 

- 8  0 8 

I' 

I 

-2  8 0 8 -8 8; 0 8,, 8 

(4 

FIGURE 11 (acd ) .  Development of irregular reflexion-Mach reflexion type. 
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enters it (figure 11 c ,  d) .  An auxiliary hodograph plane has been constructed for 
these events. The wave r2 is itself refracted by the boundary layer and will 
have a lambda foot. 

As the strenth of i continues to increase there must be a corresponding in- 
crease in the strength of r2 and this comes about by its moving upstream and 
overtaking compression waves. The development also involves interactions 

I I 1  

-8 8i 0 81, 8 

(h) 

FIGURE 11 (e-h) . Development of irregular reflexion-Mach reflexion type. 
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FIGURE 11 (i-j) . Development of irregular reflexion-Mach reflexion type. 

with rl .  The upstream movement? of T finally sweeps up all the compression 
waves (figure 11 e)  and there is now subsonic flow everywhere downstream 
of the wave system. As the strength of i is increased still further r begins to 
climb up t j  ; the process is shown partly developed in figure 11 e. The arrival 
of r at the foot o f t j  causes the compression waves to strengthen into a shock at  
t ,  and a three-shock confluence then forms a t  t,. In  the hodograph diagram 
a gap opens at  t ,  and the maps of both ti and n retreat from the sonic line locus 
as shown. The two separated segments of the map are joined by a polar which 
grows continuously as the gap opens. This polar is constructed for the Mach 
number Nit,-, (1 positive) and depends on how far r has climbed up t j .  With 
continued development r reaches the edge of the boundary layer as in figure 1 If. 
In  both planes the wave ti has now shrunk into a point and the shock system is 
similar to the double Mach reflexion shown in figure 7c. At the next event 
(figure 11 g), r has climbed up i and as a result n now extends into the main 
jtream. This is the ' Mach reflexion' observed in a wind tunnel. With further 
development the Mach number downstream of i begins to approach unity, 
Mlo + 1, and eventually MI, = 1 as in figure 11 h ;  r is then a sonic degeneracy. 
The last stages of the sequence are shown in figures 11 i and 1 1 j  where N,, < 1 
and i finally becomes normal to the flow at B. 

Concurrently with the above events the lambda foot is growing under the 
influence of the steadily increasing downstream pressure. The confluence yz 
passes up through the boundary layer until it  reaches the edge as in figure 11 g .  
With subsequent development the lambda foot extends into the main stream. 

t Dropping the superscript. 
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FIGURE 12. Development of irregular 
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reflexion-alternative type. 
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The Mach reflexion may thus be observed with or without a lambda foot in 
the main stream. Liepmann et al. (1952) have observed it with a lambda foot 
(figure 13 of their paper), while Fage & Sargent (1947) appear to have observed 
both types (figure 5 of their paper). The hodograph diagram shows also that an 
alternative shock configuration is possible. This occurs if the polars Hl(lE--l) 
and MA intersect each other as shown in figure 12e; compare with figure 11 e 
where they do not intersect. The wave system is then essentially a four-wave 
confluence type. Increasing the strength of i may force F into the main stream 
(figure 12g) and further development may change it into a Mach reflexion 
system (figure 12 h). The rest of the sequence is similar to that shown in figure 11. 
A number of these events have been observed experimentally by Bardsley & 
Mair (1951) and in those experiments the refraction of the wave A, is apparently 
producing a strong expansion. Other experimentalists who have observed the 
four-wave confluence are Liepmann et aZ. (1958), Gadd et al. (1954) and Bog- 
donoff & Kepler ( 1955). 

In  a broad sense it can now be said that there are actually two types of 
irregular reflexion in a real gas. On the one hand there is the sequence shown 
in figure 11 in which the Mach stem n is gradually extended into the main stream 
and is followed later by the extension of the lambda foot into the main stream. 
This sequence perhaps comes closest to the inviscid theory and will be called 
here ‘ Mach reflexion ’. On the other hand, there is a sequence of the type shown 
in figure 12 in which the lambda foot is first extended into the main stream 
and the Mach &em develops from this system a t  a later stage. Both types of 
irregular reflexion can be said to commence once the shock r forms and starts 
to sweep upstream. This appears to happen at the condition where the down- 
stream compression waves are deflecting the flow through the Prandtl-Meyer 
angle. The initial conditions for this critical state are shown in figure 13. The 
curve is based on the Prandtl-Meyer angle for the Mach number Ml0. The curve 
obtained from the inviscid theory is shown for comparison. The definition of 
regular and irregular reflexion can now be restated as follows. The reflexion 
will be regular if the Mach stem and the lambda foot are confined to  the bound- 
ary layer but it will be irregular if either extends into the main stream. 

The sequences shown in figures 11 and 12 involve the tacit assumption that 
if there is separation of the boundary layer near the lambda foot then its in- 
fluence is not sufficient to alter the described order of events. In  practice this 
may not always be correct, as shown by experiments due to Bardsley & Mair 
(1951). Some of their experimental points have been plotted in figure 13 and it 
will be noted that the four-wave confluence appears in the main stream long 
before the Mach reflexion limit is attained. Inspection of the photographs 
published with their paper indicates that this is associated with the separation 
of the boundary layer. In  this case the boundary layer was turbulent. The 
separation alters the sequences depicted in figures 11 and 12 by forcing the 
lambda foot into the main stream a t  an earlier stage in the development. The 
sequence would now read figures 11 a, b ,  e, 12 e-h, 11 h-j. For laminar boundary 
layers Curle (1962) has discussed a variety of theoretical and experimental 
treatments of the problem of finding the pressure distribution that leads to 
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separation. The pressure coefficient at  separation is given by expressions of the 
form : 

cp = 0.93[(M&, - 1) Re]-$. 

It therefore appears that there are at least two ways for a regular system to 
become irregular. First, a shock may form downstream of the system and 
then sweep upstream as illustrated by the sequences of figure 11 or figures 11 a-e, 
12e-h, 11 h-j. This is similar to the flow becoming ‘unstarted’ or disestablished 
as in supersonic wind tunnels and the criterion for its onset is shown in figure 13. 

20 

10 

Moo 

FIGURE 13. Conditions for the onset of Mach reflexion y = 3. Experiments (Bardsley & 
Mair 1951): A, four-wave confluence not visible; 0, four-wave confluence visible. Numbers 
refers to schlieren photographs in Bnrdsley & Mair’s paper. 

Secondly, the boundary layer may separate and force the lambda foot into the 
main stream : this is illustrated by the sequence, figure 11 a, b, e, 12 e-h, 11 h-j. 
If the boundary layer is laminar at separation then the criterion for the onset 
of the phenomenon is equation (2) ; the criterion for turbulent separation is in a 
less satisfactory state. It would be interesting to repeat Bardsley & Mair’s 
experiments at  some other values of (Moo, Re) where separation is not so in- 
fluential, the objective being to obtain the sequences shown in figures 11 and 12. 
In  any event their experiments do confirm that the theoretical curve (figure 13) 
correctly predicts the appearance of the Mach stem n in the main stream. 
Thus figure 8 of their paper is a photograph of the flow precisely at the con- 
ditions corresponding to the theoretical curve (the point is plotted in figure 13 
here). The existence of an incipient Mach stem is proved by the twin vortex 
sheets clearly visible in their photograph. 
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5. Upstream influence and viscous effects 
From the picture of the flow presented so far it may be concluded that there 

will be no essential change in the wave system if the upstream boundary-layer 
profile is altered in any way that preserves the monotonic decrease in Mach 
number from the free stream to the wall. If, for example, the profile is gradually 
changed from laminar to turbulent then the effect is only to distort the wave 
system and not to alter its basic character. Significant differences do begin to 
appear, however, once the effects of upstream influence are taken into account. 
In  experiments with laminar boundary layers an increase in wall pressure has 
been detected far upstream of the primary region of interaction. The subsonic 
part of the boundary layer gradually thickens as it approaches the lambda foot 
and this is often accompanied by separation upstream of the interaction zone. 
Compression waves are therefore generated along the upstream sonic line and 
are propagated into the main stream, where they interact with the incident 
shock i, causing it to strengthen (figure 9). The waves i, A, will be then less clearly 
defined. The methods described here can in principle be used to deduce the 
structure of the wave system if the pressure distribution along the sonic line is 
given. The distribution is not known a priori and must be obtained from the 
theory of the subsonic part of the layer, and this is considered to be outside the 
scope of the present paper. The upstream influence is usually much smaller 
when the boundary layer is turbulent and may only extend a few displacement 
heights beyond the primary refraction zone. Evidently the reason for the 
difference is that the more vigorous mixing in the turbulent boundary layer 
enables a larger pressure gradient to be supported near the lambda foot. 

Further sources of mixing are the Mach stem t jn and the lambda foot A,, 
A,, all of which emit continuous bands of vortex sheets. When the Mach number 
and the Reynolds number are large, the boundary layer may be very thin and 
the shocks inside it will be sharply curved. This means that the vortex sheets 
will be intense and they will cause vigorous mixing in the downstream part 
of the boundary layer. This suggests that, when there is a laminar profile up- 
stream, the transition to turbulence will be strongly promoted by the action of 
the waves tjnA,. 

The general shape of the streamlines in the subsonic part of the boundary 
layer is also of interest. Referring again to figure 8 the sonic line passes under- 
neath the lambda foot and then jumps to the rear of the Mach stem a t  t,. The 
thickness of the subsonic layer is therefore increased discontinuously as i t  
passes under the interaction zone. Furthermore, the sonic line is forced away 
from the wall in the upstream flow but towards the wall in the downstream 
flow. The effect is to induce a hump in the subsonic streamlines which pre- 
sumably encourages the formation of the separation bubble. A few streamlines 
have been sketched to illustrate this feature. 
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6. Concluding remarks about some experiments 
Of the various conclusions obtained from the theory it may be practical t o  

test the following items by experiment. 
(i) Is there a Mach stem tin present during regular reflexion and if so is it 

bifurcated at its foot 1 
(ii) Are there two types of regular reflexion, namely one withreflected 

compression waves and the other with both reflected compression and expansion 
waves, and if so does figure 4 accurately predict the conditions for the appear- 
ance of both types? 

(iii) Are there two types of irregular reflexion, namely one with a Mach stem 
containing a lambda foot and the other a four-wave confluence type? 

(iv) In  the absence of extensive boundary-layer separation does a regular 
reflexion change into an irregular reflexion by a process that involves the forma- 
tion of a downstream shock wave which subsequently sweeps upstream, and 
if so does the curve in figure 13 accurately predict the onset of the phenomenon ? 

Appendix. Polar intersections for two parallel streams of gas of in- 
finitesimal Mach number differences 
From one-dimensional shock theory the equations of the polars are (8 stream- 

line deflexion, Pl/Po shock pressure ratio) 

where a = PlO, 11/~00,01'  

At the polar intersections 

800 = 

Put b = 1+yM2; 

Then from (A 1) and (A2), 

the following relations are valid: 

801; ~ 1 o I ~ o o  = Pll/POl = X. 

therefore 
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Now let M,, -+ Moo; then, after simplifying, 

x 3 &(r+ 1)N;k (*(y-  l)Mt+ 1). 

Therefore in the limit 

x = 1 + ylM& which is of no physical interest, 

or x=M;- l ,  

i.e. k = M : - l 7  (A 3) 
poo, 01 

and in particular when Plo,ll/P,o,,, = 1 we have No = J2. Hence at  M, = 42  
all polar intersections coincide with the polar double point. 
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